Guestbook
Kode Shoutbox atau Buku Tamu
Sporty Magazine official website | Members area : Register | Sign in

Ilmu Statisika Pengertian Simpangan Baku,Simpangan Rata-rata dan Varians

Wednesday, September 19, 2012

Share this history on :
Simpangan Baku

Singkatnya, ia mengukur bagaimana nilai-nilai data tersebar. dan dapat diartikan sebagai, rata-rata jarak penyimpangan titik-titik data diukur dari nilai rata-rata data tersebut. Simpangan baku didefinisikan sebagai akar kuadrat varians. Simpangan baku merupakan bilangan tak-negatif, dan memiliki satuan yang sama dengan data. Misalnya jika suatu data diukur dalam satuan meter, maka simpangan baku juga diukur dalam meter pula.dan dapat juga diartikan ukuran simpangan yang paling banyak dipakai dalam statisika.

Rumus Simpangan baku ( S )

Simpangan Rata-rata (Mean Deviation)

Simpangan rata-rata merupakan penyimpangan nilai-nilai individu dari nilai rata-ratanya. Rata-rata bisa berupa mean atau median. Untuk data mentah simpangan rata-rata dari median cukup kecil sehingga simpangan ini dianggap paling sesuai untuk data mentah. Namun pada umumnya, simpangan rata-rata yang dihitung dari mean yang sering digunakan untuk nilai simpangan rata-rata. Simpangan rata-rata dihitung dengan formula berikut:
Simpangan\ rata-rata=\dfrac{\Sigma (x_i-\overline{x})}{n}
Formula tersebut tentu memenuhi dua kriteria sebelumnya, dihitung dari semua data dan menunjukkan dispersi rata-rata dari mean, tetapi tidak memenuhi kriteria ketiga. Bagaimanapun dispersi dari data, semua perhitungan dengan rumus ini akan selalu menghasilkan nilai nol. Hal ini karena pembilang dari rumus di atas \Sigma (x_i-x) menunjukkan bahwa hasil penjumlahannya akan selalu sama dengan nol.

Varians

Varians adalah salah satu ukuran dispersi atau ukuran variasi.  Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif.  Varians diberi simbol  σ2 (baca: sigma kuadrat) untuk populasi dan untuk s2 sampel. 
Selanjutnya kita akan menggunakan simbol s2  untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi.
Rumus untuk menghitung varians ada dua , yaitu rumus teoritis dan rumus  kerja.  Namun demikian, untuk mempersingkat  tulisan ini, maka kita gunakan rumus kerja saja.  Rumus kerja ini mempunyai kelebihan dibandingkan rumus teoritis, yaitu hasilnya lebih akurat dan lebih mudah mengerjakannya.

Rumus kerja untuk varians adalah sebagai berikut
r.varians3





Thank you for visited me, Have a question ? Contact on : youremail@gmail.com.
Please leave your comment below. Thank you and hope you enjoyed...

1 komentar:

Rintarou said...

Bisa tolong di beri contoh soal??

Post a Comment